Lecture
Plan:
${ }^{\circ}$ O. Discuss pret
$\checkmark 1$. Finish LP duality (Prev notes).
2. Faces of folyhedra

Faces of Polyhedra
Def: $a^{(1)} \ldots a^{(k)} \in \mathbb{R}^{n}$ are
affinely independent if

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)}=0
$$

and $\sum \lambda_{i}=0$ imply $\lambda_{1}=\ldots=\lambda_{k}=0$.
(ulout $\varepsilon \lambda_{i}=0$, is just-linear indp.)
linearindopendeme \Rightarrow afffue independ.
Note:
S (i)d D. . D. :...donomdent iff

La 'Jappiney minnow
$\left\{\left[\begin{array}{c}a^{(i)} \\ 1\end{array}\right]\right\}$ linearly independent.
$\Leftrightarrow \operatorname{aff}\left(\left\{a^{(i)}\right]\right)$ has dimension $k-1$

Def Dimension $\operatorname{dim}(P)$ of polyhedron P :
$-1+$ max $\#$ affinely
independent points in P.
Equivalent, dimension of affine hull off (P).
Examples: $p=\phi, \operatorname{dim}(p)=-1$

$$
\begin{aligned}
& P=\text { singleton } \quad \operatorname{dim}(p)=0 \\
& P=\text { line segment } \quad \operatorname{dim}(p)=1
\end{aligned}
$$

$$
a f f(P)=\mathbb{R}^{n} \quad \operatorname{dim}(P)=n ;
$$ dimensional

es. cube in $\mathbb{R}^{3}:\left\{x: 0 \leq x_{i} \leq 1\right\}$

$$
\begin{aligned}
& \operatorname{dim} P=3 \\
& \operatorname{dim} \mathbb{R}^{3}=3
\end{aligned}
$$

as polyhedron).
Wy affine, not linear? affine independence is translation invariant:
it I used max \# lin indep pants -1

$$
\begin{aligned}
& \text { \# lin indepppans }-1 \\
& \operatorname{dim}(p)=1 \quad \\
& \operatorname{dim}\left(p^{\prime}\right)=0
\end{aligned}
$$

\leadsto

$$
1=\operatorname{dim}(p)=\operatorname{dim}\left(p^{\prime}\right) .
$$

Def: $\alpha^{\top} x \leq \beta$ is a valid inequality for P if $a^{\top} x \leq \beta$ for all $x \in P$.

or

Def A face of a polyhedron P is $\{x \in P$:
$\alpha^{\top} x \leq \beta$ valid.

Faces:

Properties:

- Faces are polyhedra
- Empty face \& entire P \nearrow are called trivial faces)
- else F nontrivial

$$
\begin{gathered}
\leq \operatorname{dim}(F) \leq \\
-F: \operatorname{dim}(F)=\operatorname{dim}(P)-1 \text { called facets. } \\
m E \cdot \lim (c) \sim \text { salad curticos }
\end{gathered}
$$

Ex: list the 28 faces of the cube

$$
P=\left\{x \in \mathbb{R}^{3}\right. \text {. }
$$

Fact: ∞ many valid ineqs, but \# faces finite!

Theorem: "Faces" theorem)

$$
\text { Let } A \in \mathbb{R}^{m \times n}, \quad A=\left[\begin{array}{c}
\vdots \\
- \\
\vdots \\
\vdots
\end{array}\right]
$$

Any nonempter face of $P=\{x: A x \leq b\}$ is

$$
\{x: 1
$$

for some set $I \subseteq\{1, \ldots, m\}$.

$$
\Rightarrow
$$

E.9. cube

Proof Consider valid inequality $\alpha^{\top} x \leq b$ giving nonempty face F.

- $F=$ optimum solutions to bounded LP
(P) subject to
- Let γ^{*} optimal solution to dual.
- Complementary slackness: optimal solus F are

$$
\ell^{n}
$$

Thus we can take $I=\left\{i: y_{i}^{*}>0\right\}$.

Ex: positive orthant $\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0\right\}=\theta$ has $2^{n}+1$ faces

- How many of dim k ?

For poly topes can bound \# faces in terms of \# vertices.
"upper bound theorem!"
Dehn-Sommerville equation

For extreme points (dimension 0 faces) can just use equalities.
Theorem ("Vertex" Theorem)
Let x extreme point for $A=\left[\begin{array}{c}\vdots \\ -a i \\ \vdots\end{array}\right]$

$$
P=\{x: A x<b\}
$$

Then $\exists I$ s.t. x^{*} is the unique sola to
\square
moreover, amy such unique solution x^{k} is extreme.
eg. simplest $(0,1,0)$ is intersection of 3 constraints

Proof: Given extreme point X^{*},

- define $I=\{i:$
- Note for $i \notin I$, \square
- By "faces theorem", x^{*} uniquely affined by
(*)
ier
(**) $i \notin I$.
- Suppose 3 other sole. \hat{x} to (*).
- Because \qquad for $i \notin I$,
still satisfies (*), (**) For
- Contradicts F having only one point.

Basic Feasible solutions:
For $P=\{$
can describe extreme points very explicitly.

Corollary of Vertex Thu: Extreme pts of $P=\{ \}$ come from setting
\square
and finding unique solution to $=$ for remain variables.

Can say more: Extreme points of $p=\{x: A x=b, x \geqslant 0\}$ are
the basic feasible solutions (bfs), feasible solus obtained as follows:

- Remove redundant sews from A

$$
m \begin{aligned}
& n \\
& A
\end{aligned}
$$

- Choose M columns B of A, C,

- Solve $A_{B} X_{B}=0$, set

$$
x_{i}^{*}=\left\{\begin{array}{l}
i \in B \\
\\
\text { else }
\end{array}\right.
$$

$$
\left\{b f_{s}\right\}=\{\text { extreme } p l s\} \text {. }
$$

Corollary of Faces Theorem
facets are the maximal nontrivial faces of a nonempty polyhedron P.
Pf: Exercise.
Corollary of vertex theorem
vertices are the minimal nontrivial

