Lecture / Plan: D. Discuss pset 1. Finish LP duality (prev notes) 2. Faces of Polyhedra

La Jappnens, margin $\left\{ \begin{bmatrix} ci \\ a \\ 1 \end{bmatrix} \right\}$ linearly independent. aff ([a(i)]) has dimension K-1 # vectors.) ffinel Lependent independer in R² R² in Dimension dim (P) of polyhedron P:

-1 + max # affinely independent points inf. Epitralenter, dinansionof affine hull off(P). Examples: $P = \emptyset$, dim(P) = - $P = singleton \quad dim(P) = O$ $P = line seguent / dim(\dot{p}) = 1$

 $aff(p) = \mathbb{R}^n$ $\dim(P) = n$: P"full." eg. avbe in R3: Ex! DEXIEI)

Wy affine, not linear? affine independence is translation invariant: it I used max # lin indep paints - (dīm(p')=0 $J_{\overline{i}}v_{h}(p) = 1$

valid. $a^T x \leq \beta$ faces 1001 · Faces are polyhedra • Empty face & entire P ? are called trivial faces · else F nontrivial $\leq \dim(P) \leq$ F: dim(F) = dim(P) - 1 (alled facets. me, Im(c) collad uprhips

Any nonempty face of
$$P = \{x: A x \in b\}$$

is
 $\begin{cases} x : \\ y : \\ y : \\ y : \\ x_i \end{cases}$
For some set $I \leq \xi |_{1}, \dots, m_{3}^{2}$.
Fig. cube
 $\begin{cases} x_{3} \quad f \in \{x_{2}\}, \dots, m_{3}^{2}\}, \\ x_{i} \quad f \in \{x_{2}\}, \dots, m_{3}^{2}\}, \\ f \in \{x_{2}\}, \dots, m_{3}^{2}\}, \\ f \in \{x_{3}\}, \dots, m_{3}^{2}\}, \dots, m_{3}^{2}\}, \\ f \in \{x_{3}\}, \dots, m_{3}^{2}\}, \dots, m_{3}^{2}\}, \\ f \in \{x_{3}\}, \dots, m_{3}^{2}\}, \dots, m$

•

Proof Consider valid inequality $T \neq b$ giving nonempty face F.

• F = optimum solutions to bounded LP

(P) Subject to

· Let y * optimal solution to dual.

· Complementary slacknes:

optimal solus F are

 5_{v} : 3_{\cdot}

(*)	ieI
(**)	i¢I.
• Euppose 3	other solu. & to (*).
• Because	for i∉ I,
Still satisfi	es (*), (* *) for
· Contradicts	Fhaving only one point. D.
Basic Fe	asible solutions:
	$s = \{ f \in \mathcal{F}_{n} \}$
Can descr	ilse extreme points
vorgexpl	ichty.
(J.

Corollary of Vertex Thm: Extreme pts. of P= { 3 come from setting and Findin unique solution to for remain variables.

Can say more : Extreme points of P= Sx: Ax=b, xioj are the <u>basic feasible solutions</u> (bfs), feasible soluts obtained as follows:

Remone redundant rows from A (

{ } bfs } = {extreme pts}. Corollary of Faces Theorem facets are the maximal nontrivial faces of a nonempty pelyhedron P. Pf: Exercise. Corollon of versex theorem verfices are the <u>minimal</u> nontrivial

